首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13728篇
  免费   1258篇
  国内免费   452篇
电工技术   517篇
综合类   948篇
化学工业   2070篇
金属工艺   580篇
机械仪表   1222篇
建筑科学   621篇
矿业工程   880篇
能源动力   292篇
轻工业   2040篇
水利工程   75篇
石油天然气   546篇
武器工业   131篇
无线电   1548篇
一般工业技术   2166篇
冶金工业   674篇
原子能技术   43篇
自动化技术   1085篇
  2024年   36篇
  2023年   359篇
  2022年   362篇
  2021年   629篇
  2020年   588篇
  2019年   496篇
  2018年   426篇
  2017年   474篇
  2016年   498篇
  2015年   498篇
  2014年   893篇
  2013年   742篇
  2012年   1009篇
  2011年   1065篇
  2010年   761篇
  2009年   718篇
  2008年   586篇
  2007年   843篇
  2006年   863篇
  2005年   682篇
  2004年   522篇
  2003年   448篇
  2002年   365篇
  2001年   292篇
  2000年   293篇
  1999年   191篇
  1998年   160篇
  1997年   113篇
  1996年   126篇
  1995年   108篇
  1994年   81篇
  1993年   55篇
  1992年   40篇
  1991年   33篇
  1990年   16篇
  1989年   18篇
  1988年   13篇
  1987年   7篇
  1986年   3篇
  1985年   2篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1962年   1篇
  1959年   1篇
  1957年   1篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
1.
Novel inks were formulated by dissolving polycaprolactone (PCL), a hydrophobic polymer, in organic solvent systems; polyethylene oxide (PEO) was incorporated to extend the range of hydrophilicity of the system. Hydroxyapatite (HAp) with a weight ratio of 55–85% was added to the polymer-based solution to mimic the material composition of natural bone tissue. The direct ink writing (DIW) technique was applied to extrude the formulated inks to fabricate the predesigned tissue scaffold structures; the influence of HAp concentration was investigated. The results indicate that in comparison to other inks containing HAp (55%, 75%, and 85%w/w), the ink containing 65% w/w HAp had faster ink recovery behavior; the fabricated scaffold had a rougher surface as well as better mechanical properties and wettability. It is noted that the 65% w/w HAp concentration is similar to the inorganic composition of natural bone tissue. The elastic modulus values of PCL/PEO/HAp scaffolds were in the range of 4–12 MPa; the values were dependent on the HAp concentration. Furthermore, vancomycin as a model drug was successfully encapsulated in the PCL/PEO/HAp composite scaffold for drug release applications. This paper presents novel drug-loaded PCL/PEO/HAp inks for 3D scaffold fabrication using the DIW printing technique for potential bone scaffold applications.  相似文献   
2.
《Ceramics International》2022,48(8):10613-10619
Alumina ceramics with different unit numbers and gradient modes were prepared by digital light processing (DLP) 3D printing technology. The side length of each functional gradient structure was 10 mm, the porosity ratio was controlled to 70%, and the number of units were (1 × 1 × 1 unit) and (2 × 2 × 2 unit) respectively. The different gradient modes were named FCC, GFCC-1, GFCC-2 and GFCC-3. SEM, XRD, and other characterization methods proved that these gradient structures of alumina ceramics had only α-Al2O3 phase and good surface morphology. The mechanical properties and energy absorption properties of alumina ceramics with different functional gradient structures were studied by compression test. The results show that the gradient structure with 1 × 1 × 1 unit has better mechanical properties and energy absorption properties when the number of units is different. When the number of units is the same, GFCC-2 and GFCC-3 gradient structures have better compressive performance and energy absorption potential than FCC structures. The GFCC-2 gradient structure with 1 × 1 × 1 unit has a maximum compressive strength of 19.62 MPa and a maximum energy absorption value of 2.72 × 105 J/m3. The good performance of such functional gradient structures can provide new ideas for the design of lightweight and compressive energy absorption structures in the future.  相似文献   
3.
4.
Ca3Co4O9 is a promising p-type thermoelectric oxide material having intrinsically low thermal conductivity. With low cost and opportunities for automatic large scale production, thick film technologies offer considerable potential for a new generation of micro-sized thermoelectric coolers or generators. Here, based on the chemical composition optimized by traditional solid state reaction for bulk samples, we present a viable approach to modulating the electrical transport properties of screen-printed calcium cobaltite thick films through control of the microstructural evolution by optimized heat-treatment. XRD and TEM analysis confirmed the formation of high-quality calcium cobaltite grains. By creating 2.0 at% cobalt deficiency in Ca2.7Bi0.3Co4O9+δ, the pressureless sintered ceramics reached the highest power factor of 98.0 μWm?1 K-2 at 823 K, through enhancement of electrical conductivity by reduction of poorly conducting secondary phases. Subsequently, textured thick films of Ca2.7Bi0.3Co3.92O9+δ were efficiently tailored by controlling the sintering temperature and holding time. Optimized Ca2.7Bi0.3Co3.92O9+δ thick films sintered at 1203 K for 8 h exhibited the maximum power factor of 55.5 μWm?1 K-2 at 673 K through microstructure control.  相似文献   
5.
Tissue engineering requires the precise positioning of mammalian cells and biomaterials on substrate surfaces or in preprocessed scaffolds. Although the development of 2D and 3D bioprinting technologies has made substantial progress in recent years, precise, cell-friendly, easy to use, and fast technologies for selecting and positioning mammalian cells with single cell precision are still in need. A new laser-based bioprinting approach is therefore presented, which allows the selection of individual cells from complex cell mixtures based on morphology or fluorescence and their transfer onto a 2D target substrate or a preprocessed 3D scaffold with single cell precision and high cell viability (93–99% cell survival, depending on cell type and substrate). In addition to precise cell positioning, this approach can also be used for the generation of 3D structures by transferring and depositing multiple hydrogel droplets. By further automating and combining this approach with other 3D printing technologies, such as two-photon stereolithography, it has a high potential of becoming a fast and versatile technology for the 2D and 3D bioprinting of mammalian cells with single cell resolution.  相似文献   
6.
Shape memory materials (SMMs) in 3D printing (3DP) technology garnered much attention due to their ability to respond to external stimuli, which direct this technology toward an emerging area of research, “4D printing (4DP) technology.” In contrast to classical 3D printed objects, the fourth dimension, time, allows printed objects to undergo significant changes in shape, size, or color when subjected to external stimuli. Highly precise and calibrated 4D materials, which can perform together to achieve robust 4D objects, are in great demand in various fields such as military applications, space suits, robotic systems, apparel, healthcare, sports, etc. This review, for the first time, to the best of the authors’ knowledge, focuses on recent advances in SMMs (e.g., polymers, metals, etc.) based wearable smart textiles and fashion goods. This review integrates the basic overview of 3DP technology, fabrication methods, the transition of 3DP to 4DP, the chemistry behind the fundamental working principles of 4D printed objects, materials selection for smart textiles and fashion goods. The central part summarizes the effect of major external stimuli on 4D textile materials followed by the major applications. Lastly, prospects and challenges are discussed, so that future researchers can continue the progress of this technology.  相似文献   
7.
Patterned photonic crystals with structural colors on textile substrates have attracted a special attention due to the great advantages in application, which currently become a research hot-spot. This study utilized an ink-jet printing technology to prepare high-quality photonic crystal patterns with structural colors on polyester substrates. The self-assembly temperature of poly(styrene-N-methylol acrylamide) (P(St-NMA)) microspheres set to construct photonic crystals were deeply optimized. Moreover, the structural colors of prepared photonic crystal patterns were characterized and evaluated. When the mass fraction of P(St-NMA) microspheres was 1.0 wt.%, the pH value ranged from 5 to 7, and the surface tension was in the range of 63.79 to 71.20 mN/m, inks could present the best print performance. At 60 °C, prepared P(St-NMA) microsphere inks were good for printing to obtain patterned photonic crystals with regular arrangement and beautiful structural colors. Specifically, photonic crystals with different colors could be constructed by regulating the diameter of microspheres in inks, and prepared structural colors exhibited distinct iridescent phenomenon. The present results could provide a theoretical basis for the industrial realization of patterned photonic crystals by ink-jet printing technology.  相似文献   
8.
化学强化是一种玻璃机械强度增强方法,适用于异型、超薄、高碱、高膨胀玻璃增强,因新型超薄显示产品的屏幕保护玻璃发展需要,化学强化技术重新在碱铝硅酸盐玻璃品种掀起研究热潮。本文对化学强化本质及铝硅酸盐玻璃在屏幕保护玻璃应用进行了回顾,基于玻璃化学强化的高CS、DOL和低CT诉求,归纳总结了关键影响因素,第1,碱铝硅酸盐玻璃的成分及结构是基础,氧化铝有利玻璃网络孔隙增大创造交换通道,氧化钠或氧化锂是离子交换关键物质;第2,对于玻璃组成和结构设计,要求玻璃网络键合度R=O/Si或O/(Si+Al)满足2.15~2.40,碱金属氧化物质量分数大于13%且膨胀系数大于6×10^-6/℃;第3,在化学强化工艺方面,化学强化温度决定离子扩散系数,化学强化时间决定DOL,一步法仅能获得相对较大的CS,而DOL不很理想,只有两种离子参与交换的二步法才有利于CS和DOL同步提高。  相似文献   
9.
针对煤矿选煤厂直线振动筛工作过程中出现的结构故障问题,采用有限元仿真与现场测试结合的方法对振动筛出现故障的原因进行了分析研究。介绍了振动筛的主要结构及常见故障,并以某矿选煤厂发生大梁断裂的振动筛为例,对该振动筛进行三维建模和有限元模态分析,分析结果表明:随着模态阶次的增加,振型的变化逐渐由移动转为结构本身的扭曲变形。在该振动筛空载工作状态下,选用本质安全型便携式测振记录仪进行振动测试并处理测试信号,得到该振动筛的工作频率。结合模态分析结果和实际测试结果,判断出空载时频繁运行振动筛是造成其大梁断裂的主要原因。根据故障原因给出维护建议:应当尽量避免振动筛在空载或物料较少的状态下长时间运行;在振动筛投入使用前,应预先了解振动筛的工作状态及可能存在的薄弱环节,尽可能避免结构故障,保证振动筛可靠运行。  相似文献   
10.
A facile approach to locally concentrate analytes of interest will significantly enhance miniaturized, integrated chemical‐analysis systems. Here, the directed analyte transport and concentration using ≈200 µm‐diameter E‐jet printed chemical potential wells in a polyacrylamide hydrogel is demonstrated. Using a cationic well as the model system, anionic analytes are accumulated into a microscale area with a local concentration enhancement of >50‐fold relative to the surrounding area. By downscaling the diameter of the chemical potential well from a few millimeters to 100s of micrometers, it is found, using both fluorescence and Raman microscopy, that the molecular collection capacity of the well is greatly improved. Additionally, it is shown that molecules can be simultaneously transported and concentrated to arrays of microscale regions using an array of microscale chemical potential wells. This approach enhances many‐fold the limit of detection, enables the formation of microscale potential well arrays with a variety of chemical properties, and provides a novel microscale molecular manipulation technique as an alternative to traditional microfluidic‐based systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号